Tuesday, 23 May 2017

On This Day in Math - May 30


The best review of arithmetic 
consists in the study of algebra.
~Florian Cajori

The 150th day of the year; 150 is the largest gap between consecutive twin prime pairs less than a thousand. It occurs between {659, 661} and {809, 811}. *Prime Curios

A Poly divisible number is an n-digit number so that for the first digit is divisible by one, the first two digits are divisible by two, the first three digits are divisible by three, etc up to n. There are 150 three-digit poly divisible numbers. Hat tip to Derek Orr .

150 is a common estimate of Dunbar's Number; Dunbar's number is a suggested cognitive limit to the number of people with whom one can maintain stable social relationships—relationships in which an individual knows who each person is and how each person relates to every other person. This number was first proposed in the 1990s by British anthropologist Robin Dunbar, who found a correlation between primate brain size and average social group size. By using the average human brain size and extrapolating from the results of primates, he proposed that humans can comfortably maintain only 150 stable relationships. Dunbar explained it informally as "the number of people you would not feel embarrassed about joining uninvited for a drink if you happened to bump into them in a bar" *Wik


EVENTS

1667 After much debate about the presence of a woman at a Royal Society meeting, the Duchess of Newcastle was allowed to observe a demonstration of a "experiments of colours", the "weighing of air in an exhausted receiver", and "the dissolving of flesh with a certain liquor of Mr. Boyle's suggesting." This was probably the first visit by a woman to the Royal Society. The Duchess, Margaret Cavendish, was a competent scientist in her own right. Her prolific writings in the nature of science earned her the nickname “Mad Madge”. I have a note from VFR that she was elected to FRS, but can not confirm, the note says "No other woman was elected FRS until 1945" .

1765 "Ms. Catherine Price, Daughter of the late Dr. Halley " was paid a sum of 100 Pounds for "causing to be delivered to the Commissioners of the Longitude, several of the said Dr. oHalley's manuscript papers, which... may lead to discoveries useful to navigation." *Derek Howse, Britain's Board of Longitude, the Finances

1832 Galois mortally wounded by a gunshot wound to the abdomen in a duel of honor. He was left for dead after the duel but a peasant took him to a hospital. *VFR

The infamous duel with Pescheux d'Herbinville took place near the Glassier pond in the southern suburb of Gentilly. The duel was over Galois's involvement with Stéphanie-Félicie Poterine du Motel, who was d'Herbinville's fiancée, but it has been claimed that the affair was a political frame-up by government agents in order to eliminate Galois He died in the Cochin Hospital – this is now at 27 Rue du Faubourg St. Jacques, 14e, but I don't know how long it has been there. He was buried in a common grave at Montparnasse Cemetery, but no trace of the grave remains.

1903 Minor planet (511) Davida Discovered 1903 May 30 by R. S. Dugan at Heidelberg. Named by the discoverer in honor of David P. Todd (1855-1939), professor of astronomy and director of the Amherst College Observatory (1881-1920). David Todd was the husband of Mabel Todd, who wrote books about solar eclipses. David has also a drawing of a painting of a solar eclipse in one of his books. *NSEC


BIRTHS

1423 Georg von Peurbach (or Peuerbach) (May 30, 1423 in Peuerbach near Linz – April 8, 1461 in Vienna)  He worked on trigonometry astronomy, and was the teacher of Regiomontanus. *VFR
He promoted the use of Arabic numerals (introduced 250 years earlier in place of Roman numerals), especially in a table of sines he calculated with unprecedented accuracy. He died before this project was finished, and his pupil, Regiomontanus continued it until his own death. Peurbach was a follower of Ptolomy's astronomy. He insisted on the solid reality of the crystal spheres of the planets, going somewhat further than in Ptolomy's writings. He calculated tables of eclipses in Tabulae Ecclipsium,observed Halley's comet in Jun 1456 and the lunar eclipse of 3 Sep 1457 from a site near Vienna. Peurbach wrote on astronomy, his observations and devised astronomical instruments. *TIS  The Renaissance Mathematicus has a nice piece about Peurbach and his life... the kind of detail that comes from a passion for his subject.  Check it out. 

1800 Karl Wilhelm Feuerbach (30 May 1800 – 12 March 1834) born in Jena, Germany. His mathematical fame rests entirely on three papers. Most important was this contribution to Euclidean geometry: The circle which passes through the feet of the altitudes of a triangle touches all four of the circles which are tangent to the three sides; it is internally tangent to the inscribed circle and externally tangent to each of the circles which touches the sides of the triangle externally. *VFR

The circle is also commonly called the Nine-point circle. It passes through the feet of the altitudes, the midpoints of the three sides, and the point half way between the orthocenter and the vertices.


1814 Eugene Charles Catalan (30 May 1814 – 14 February 1894) was a Belgian mathematician who defined the numbers called after him, while considering the solution of the problem of dissecting a polygon into triangles by means of non-intersecting diagonals. *SAU The Catalan numbers have a multitude of uses in combinatorics.

1889 Paul Ernest Klopsteg (May 30, 1889 – April 28, 1991) was an American physicist. The asteroid 3520 Klopsteg was named after him and the yearly Klopsteg Memorial Award was founded in his memory.
He performed ballistics research during World War I at the US Army's Aberdeen Proving Grounds in Maryland. He applied his knowledge of ballistics to the study of archery.
He was director of research at Northwestern University Technical Institution. From 1951 through 1958 he was an associate director of the National Science Foundation and was president of the American Association for the Advancement of Science from 1958 through 1959.*Wik

1908 Hannes Olof Gösta Alfvén (30 May 1908 in Norrköping, Sweden; 2 April 1995 in Djursholm, Sweden) Alfvén developed the theory of magnetohydrodynamics (MHD), the branch of physics that helps astrophysicists understand sunspot formation and the magnetic field-plasma interactions (now called Alfvén waves in his honor) taking place in the outer regions of the Sun and other stars. For this pioneering work and its applications to many areas of plasma physics, he shared the 1970 Nobel Prize in physics. *DEBORAH TODD AND JOSEPH A. ANGELO, JR., A TO Z OF SCIENTISTS IN SPACE AND ASTRONOMY


DEATHS

1778 (François Marie Arouet) Voltaire (21 November 1694 – 30 May 1778) was a French author who popularized Isaac Newton's work in France by arranging a translation of Principia Mathematica to which he added his own commentary (1737). The work of the translation was done by the marquise de Châtelet who was one of his mistresses, but Voltaire's commentary bridged the gap between non-scientists and Newton's ideas at a time in France when the pre-Newtonian views of Descartes were still prevalent. Although a philosopher, Voltaire advocated rational analysis. He died on the eve of the French Revolution.*TIS

1912 Wilbur Wright  (April 16, 1867 – May 30, 1912), American aviation pioneer, who with his brother Orville, invented the first powered airplane, Flyer, capable of sustained, controlled flight (17 Dec 1903). Orville made the first flight, airborn for 12-sec. Wilbur took the second flight, covering 853-ft (260-m) in 59 seconds. By 1905, they had improved the design, built and and made several long flights in Flyer III, which was the first fully practical airplane (1905), able to fly up to 38-min and travel 24 miles (39-km). Their Model A was produced in 1908, capable of flight for over two hours of flight. They sold considerable numbers, but European designers became strong competitors. After Wilbur died of typhoid in 1912, Orville sold his interest in the Wright Company in 1915 *TIS

1926 Vladimir Andreevich Steklov (9 January 1864 – 30 May 1926)  made many important contributions to applied mathematics. In addition to the work for his master's thesis and his doctoral thesis referred to above, he reduced problems to boundary value problems of Dirichlet type where Laplace's equation must be solved on a surface. He wrote General Theory of Fundamental Functions in which he examined expansions of functions as series in an infinite system of orthogonal eigenfunctions. In fact the term "Fundamental Functions", which is due to Poincaré, means eigenfunctions in today's terminology.
Steklov was not the first to examine series expansions in terms of infinite sets of orthogonal eigenfunctions, of course Fourier had examined a special case of this situation many years before. Steklov, however, produced many papers on this topic which led him to a general theory to replace the special cases examined by others. He studied a generalisation of Parseval's equality for Fourier series to his general setting showing this to be a fundamental property. In all his list of publications contains 154 items. *SAU

1943 Anderson McKendrick (September 8, 1876 - May 30, 1943) trained as a medical doctor in Glasgow and came to Edinburgh as Superintendent of the College of Physicians Laboratory. He made some significant mathematical contributions to biology. *SAU

1964 Leo Szilard (11 Feb 1898; 30 May 1964 at age 66) Hungarian-American physicist who, with Enrico Fermi, designed the first nuclear reactor that sustained nuclear chain reaction (2 Dec 1942). In 1933, Szilard had left Nazi Germany for England. The same year he conceived the neutron chain reaction. Moving to N.Y. City in 1938, he conducted fission experiments at Columbia University. Aware of the danger of nuclear fission in the hands of the German government, he persuaded Albert Einstein to write to President Roosevelt, urging him to commission American development of atomic weapons. In 1943, Major General Leslie Groves, leader of the Manhattan Project designing the atomic bomb, forced Szilard to sell his atomic energy patent rights to the U.S. government. *TIS Frederik Pohl , talks about Szilard's epiphany about chain reactions in Chasing Science (pg 25),
".. we know the exact spot where Leo Szilard got the idea that led to the atomic bomb. There isn't even a plaque to mark it, but it happened in 1938, while he was waiting for a traffic light to change on London's Southampton Row. Szilard had been remembering H. G. Well's old science-fiction novel about atomic power, The World Set Free and had been reading about the nuclear-fission experiment of Otto Hahn and Lise Meitner, and the lightbulb went on over his head."

1992 Antoni Zygmund (December 25, 1900 – May 30, 1992) Polish-born mathematician who created a major analysis research centre at Chicago, and recognized in 1986 for this with the National Medal for Science. In 1940, he escaped with his wife and son from German controlled Poland to the USA. He did much work in harmonic analysis, a statistical method for determining the amplitude and period of certain harmonic or wave components in a set of data with the aid of Fourier series. Such technique can be applied in various fields of science and technology, including natural phenomena such as sea tides. He also did major work in Fourier analysis and its application to partial differential equations. Zygmund's book Trigonometric Series (1935) is a classic, definitive work on the subject.


Credits :
*CHM=Computer History Museum
*FFF=Kane, Famous First Facts
*NSEC= NASA Solar Eclipse Calendar
*RMAT= The Renaissance Mathematicus, Thony Christie
*SAU=St Andrews Univ. Math History
*TIA = Today in Astronomy
*TIS= Today in Science History
*VFR = V Frederick Rickey, USMA
*Wik = Wikipedia
*WM = Women of Mathematics, Grinstein & Campbell

On This Day in Math - May 23


 (a symbol) We can repudiate completely and 
which we can abandon without regret 
because one does not know 
what this pretended sign signifies
nor what sense one ought to attribute to it. 

Cauchy in 1847 in regard to the square root of negative one..


The 143rd day of the year; there are 143 three-digit primes.

Also, 1432 is a divisor of 143143.HT to Matt McIrvin who found the pattern for numbers such that n^2 divides n.n (where the dot represents concatenation) and then found it is at OEIS

100^143 - 143 is prime. Note that 143 is the second number with this property. What's the first?


EVENTS

1221 "On the first day of the fifth month (May 23), at noon, the Sun was eclipsed and it was total. All the stars were therefore seen. A short while later the brightness returned. At that time we were on the southern bank of the river. The eclipse (began) at the south-west and (the Sun) reappeared from the north-east. At that place it is cool in the morning and warm in the evening; there are many yellow flowers among the grass. The river flows to the north-east. On both banks there are many tall willows. The Mongols use them to make their tents. [Later] (Ch'ang-ch'un) asked (an astronomer) about the solar eclipse on the first day of the month
(May 23). The man replied: 'Here the Sun was eclipsed up to 7 fen (6/10) at the hour of ch'en (7-9 h)'. The Master continued, 'When we were by the Lu-chu Ho (Kerulen River), during the hour wu (11-13 h) the Sun was seen totally eclipsed and also south-west of Chin-shan the people there said that the eclipse occurred at the hour szu (9-11 h) and reached 7 fen. At each of these three places it was seen differently. According to the commentary on the ch'un-ch'iu by K'ung Ying-ta, when the body (of the Moon) covers the Sun, then there will be a solar eclipse. Now I presume that we must have been directly beneath it; hence we observed the eclipse to be total. On the other hand, those people on the sides (of the shadow) were further away and hence (their view) gradually became different. This is similar to screening a lamp with a fan. In the shadow of the fan there is no light or brightness. Further away from the sides (of the fan) then the light of the lamp gradually becomes greater." Refers to a total solar eclipse of 23 May 1221. From: Ch'ang-ch'un Chen-jen Tao-ts'ang('The Journey of the Adept Ch'ang-ch'un to the West'). *NASA Eclipse Calendar

1576 Brahe is given use of the island of Hveen for an observatory. [Wadsworth] *VFR

1771 Benjamin Franklin visits Joseph Priestley at his home in Leeds just after he begins experimenting with placing mint under a glass to see how long it took to die. Priestly had put insects, small animals, candles etc under glass to measure the time it took to use up the "life force" in the air. To his surprise, the mint flourished in his pneumatic trough. Eventually he would realize that the "spent" air could be rejuvenated by placing a living plant inside the glass. *Steven Johnson, The Invention of Air


1785, a letter from Benjamin Franklin documented his invention of his new bifocal glasses. He was writing from France to a friend describing the solution to carrying around two pairs of glasses to see objects at different distances, with the comment that "I have only to move my eyes up and down as I want to see far or near." Franklin incorporated a two part lens for each eye, each parts having a different focussing power. The invention had limited acceptance at a time when even ordinary spectacles in the colonies already cost as much as $100 per pair. *TIS

1825, the electromagnet in a practical form was first exhibited by its inventor, William Sturgeon, on the occasion of reading a paper, recorded in the Transactions of the Society of Arts for 1825 (Vol xliii, p.38). The publication showed pictures of his set of improved apparatus for electromagnetic experiments, including two electromagnets, one of horse-shoe shape and one  a straight bar. The formed was bent from a rod about 1 foot (30 cm) long and one-half inch (1.3 cm) in diameter, varnished for insulation, then coiled with a single spiral of 18 turns of stout copper wire. In return for the Society's medal and premium, Sturgeon deposited the apparatus in the museum of the Society. Sadly, this was lost after the society's museum was dispersed. *TIS  This would have been the day after his forty-second birthday.  (see May 22)

1933  Max Wasserberg received a patent for a "beach and lawn chair" (U.S. No. 1,911,127). *TIS  Why is this American hero not better known?  

1958 Explorer I, the 1st US satellite in orbit, ceases transmission. *David Dickinson ‏@Astroguyz

1994 Java development begins in earnest:
Sun Microsystems Inc. formally announced its new programs, Java and HotJava at the SunWorld '95 convention. Java was described as a programming language that, combined with the HotJava World Wide Web browser, offered the best universal operating system to the online community. The concept behind the programs was to design a programming language whose applications would be available to a user with any kind of operating system, eliminating the problems of translation between Macintoshes, IBM-compatible computers, and Unix machines. *CHM

2014 "Tonight, Tonight, won't be just any night." NASA predicts a never before seen meteor shower. The shower is the May Camelopardalids (a faint constellation near the North Star), caused by dust from periodic comet 209P/LINEAR. No one has ever seen it before, but this year the Camelopardalids could put on a display that rivals the well-known Perseids of August.

"Some forecasters have predicted more than 200 meteors per hour," *science.nasa.gov





BIRTHS

1606 Juan Caramuel Y Lobkowitz (May 23, 1606 in Madrid — September 8, 1682 in Vigevano)  His Mathesis biceps of 1670 expounds the general principle of number systems with an arbitrary base b. Caramuel points out that some of these might be of more use than the decimal system. [DSB 3, 61] *VFR 
Donald Knuth writes in The Art of Computer Programming Volume 2:- The first published discussion of the binary system was given in a comparatively little-known work by a Spanish bishop, Juan Caramuel Lobkowitz, 'Mathesis biceps' (Campaniae, 1670) pp. 45-48: Caramuel discusses the representation of numbers in radices 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, and 60 at some length, but gave no examples of arithmetic operations in nondecimal systems (except for the trivial operation of adding unity). He loved puzzles and published a collection containing some that he had composed when he was only ten years old. Mathematical puzzles and games of chance form part of Mathesis biceps (1670). He proposed a new method of trisecting an angle and developed a system of logarithms to base 109 where log 1010 = 0 and log 1 = 10. He was the first to publish log tables in Spanish. Among Caramuel's other scientific work ...a system he developed to determine longitude using the position of the moon. He wrote widely on grammar, linguistics and rhetoric but perhaps his most interesting proposal in this area was to argue for the creation of a universal language. *SAU

1820 James Buchanan Eads (May 23, 1820 – March 8, 1887) was an American engineer who built the two-tier triple-arch steel bridge over the Mississippi River at St. Louis, Missouri. At the age of 22, he invented a boat and diving bell which enabled walking on the river bottom. In 12 years' time he made a fortune with his salvage boat operation. During the Civil War, he built ironclad warships. After the war, he built the Mississippi River bridge, the first major bridge to use steel and cantilevered construction, which was opened 4 Jul 1874. Each roughly 500-ft span rested on piers built on bedrock about 100 feet beneath the river bottom. He created a year-round navigation channel for New Orleans scoured out with a system of jetties harnessing the river's water flow (1879)*TIS

1849 Arthur Edwin Haynes,(May 23, 1849;Baldwinsville, Onondaga County, New York, USA - Mar. 12, 1915; Minneapolis, Minnesota) Professor of Mathematics and Physics at Hillsdale College from 1875 until 1890. He came to Michigan in June 1858. They located near the village of Reading in southwestern Hillsdale Co. where the father had a farm.
Arthur received a common school education and remained on the family farm until he reached twenty years of age.
In the fall of 1870, Arthur entered Hillsdale College where he remained, a diligent student, until he was graduated from that institution in June 1875. He taught several terms of district school before graduation and was also employed during his college course as a tutor in mathematics in the college. During the summer between his junior and senior years, he assisted in the erection of the Central College building, in order to earn money to continue his studies. He carried a hod from the first story until the completion of the fourth, shouldering 80 pounds of brick and walking from the bottom to the top of the ladder (20 feet) without touching the hod handle, a feat that he was justly proud of. His classroom at Hillsdale was in that same building.
Immediately following graduation,he married and was appointed instructor in mathematics in Hillsdale College in the fall of 1875, and two years later was elected to the full Professorship. In 1885 he was elected a member of the London Mathematical Society. In 1890 he switched to the University of Minnesota. He wrote a paper on "The Mounting and Use of a Spherical Blackboard." He died in Minneapolis in 1915 and his body was removed back to Hillsdale where he was buried in Oak Grove Cemetary *PB notes

1887 Thoralf Skolem (23 May 1887 – 23 March 1963)  number theorist and logician. At the International Congress of Mathematicians in Cambridge in 1950 he said “We ought not to regard all that is written in the traditional textbooks as something sacred.” It was this attitude that earlier allowed him to discover that the real numbers could have countable models, a fact known as Skolem’s paradox.

1907 Boris A. Kordemsky ( 23 May 1907 – 29 March, 1999) was a Russian mathematician and educator. He is best known for his popular science books and mathematical puzzles. He is the author of over 70 books and popular mathematics articles.
Kordemsky received Ph.D. in education in 1956 and taught mathematics at several Moscow colleges.
He is probably the best-selling author of math puzzle books in the history of the world. Just one of his books, Matematicheskaya Smekalka (or, Mathematical Quick-Wits), sold more than a million copies in the Soviet Union/Russia alone, and it has been translated into many languages. By exciting millions of people in mathematical problems over five decades, he influenced generations of solvers both at home and abroad. *Age of Puzzles, by Will Shortz and Serhiy Grabarchuk (mostly)

1908 John Bardeen (23 May 1908; 30 Jan 1991 at age 82) American physicist who was cowinner of the Nobel Prize for Physics in both 1956 and 1972. He shared the 1956 prize with William B. Shockley and Walter H. Brattain for their joint invention of the transistor. With Leon N. Cooper and John R. Schrieffer he was awarded the 1972 prize for development of the theory of superconductors, usually called the BCS-theory (after the initials of their names). *TIS

1917  Edward Norton Lorenz   (May 23, 1917 - April 16, 2008) American mathematician and meteorologist known for pointing out the "butterfly effect" whereby chaos theory predicts that "slightly differing initial states can evolve into considerably different states." In his 1963 paper in the Journal of Atmospheric Sciences, he cited the flapping of a seagull's wings as changing the state of the atmosphere in even such a trivial way can result in huge changes in outcome in weather patterns. Thus very long range weather forecasting becomes almost impossible. He determined this unexpected result in 1961 while running a computer weather simulation that gave wildly different results from even tiny changes in the input data. *TIS


1946 Dr. H. Paul Shuch (May 23, 1946- ) is an American scientist and engineer who has coordinated radio amateurs to help in the search for extraterrestrial intelligence. Shuch, an aerospace engineer and microwave technologist is believed by colleague Jack Unger to be the creator of the world's first commercial home satellite TV receiver. A visiting professor at Lycoming College and the Heidelberg University of Applied Sciences, Shuch continues to volunteer as the Executive Director Emeritus of The SETI League, Inc. He has taught physics, astronomy, and engineering on various campuses for over three decades.
Shuch is a Vietnam-era Air Force veteran and active instrument flight instructor. He founded Microcomm Consulting in 1975, where in 1978 he designed and produced a commercial home satellite TV receiver.*Wik

1950 Malcolm John Williamson (May 23, 1950 - ) discovered in 1974 what is now known as Diffie-Hellman key exchangeHe was then working at GCHQ.
Williamson studied at Manchester Grammar School, winning first prize in the 1968 British Mathematical Olympiad. He also won a Silver prize at the 1967 International Mathematical Olympiad in Cetinje, Yugoslavia and a Gold prize at the 1968 International Mathematical Olympiad in Moscow. He read mathematics at Trinity College, Cambridge, graduating in 1971. After a year at Liverpool University, he joined GCHQ, and worked there until 1982.
From 1985 to 1989 Williamson worked at Nicolet Instruments in Madison, Wisconsin where he was the primary author on two digital hearing aid patents. *Wik

DEATHS

1691 Adrien Auzout (28 January 1622 – 23 May 1691) was a French astronomer.
In 1664–1665 he made observations of comets, and argued in favor of their following elliptical or parabolic orbits. (In this he was opposed by his rival Johannes Hevelius.) Adrien was briefly a member of the Académie Royale des Sciences from 1666 to 1668, and a founding member of the French Royal Obseratory. (He may have left the academy due to a dispute.) He was elected a Fellow of the Royal Society of London in 1666. He then left for Italy and spent the next 20 years in that region, finally dying in Rome in 1691. Little is known about his activities during this last period.
Auzout made contributions in telescope observations, including perfecting the use of the micrometer. He made many observations with large aerial telescopes and he is noted for briefly considering the construction of a huge aerial telescope 1,000 feet in length that he would use to observe animals on the Moon. In 1647 he performed an experiment that demonstrated the role of air pressure in function of the mercury barometer. In 1667–68, Adrien and Jean Picard attached a telescopic sight to a 38-inch quadrant, and used it to accurately determine positions on the Earth. The crater Auzout on the Moon is named after him. *Wik

1857 Augustin-Louis Cauchy (21 August 1789 – 23 May 1857)Augustin-Louis Cauchy pioneered the study of analysis, both real and complex, and the theory of permutation groups. He also researched in convergence and divergence of infinite series, differential equations, determinants, probability and mathematical physics.*SAU
A few hours before his death, age 68,  was talking animatedly with the Archbishop of Paris of the charitable works he had in view—for charity was a life long interest of Cauchy. His last words were “Men pass away but their deeds abide.” [Bell, Men of Mathematics, p 293]. *VFR   Cauchy was active in the Saint Vincent de Paul society, Irish relief, and homes for unwed mothers, but he will always be remembered more as the man who refused Abel's paper to the French Academy.

 1889   George Henri Halphen (30 October 1844, Rouen – 23 May 1889, Versailles) was a French mathematician. He did his studies at École Polytechnique (X 1862). He was known for his work in geometry, particularly in enumerative geometry and the singularity theory of algebraic curves, in algebraic geometry. He also worked on invariant theory and projective differential geometry. *Wik

2015 1928 John Forbes Nash, Jr (born June 13, 1928- May 23, 2015) was an American mathematicia whose works in game theory, differential geometry, and partial differential equations have provided insight into the forces that govern chance and events inside complex systems in daily life. His theories are used in market economics, computing, evolutionary biology, artificial intelligence, accounting, politics and military theory. Serving as a Senior Research Mathematician at Princeton University during the later part of his life, he shared the 1994 Nobel Memorial Prize in Economic Sciences with game theorists Reinhard Selten and John Harsanyi.
Nash is the subject of the Hollywood movie "A Beautiful Mind". The film, loosely based on the biography of the same name, focuses on Nash's mathematical genius and struggle with paranoid schizophrenia *Wik Nash, 86, and his wife Alicia, 82, died in a car crash in a taxi on the New Jersey turnpike on May 23, 2015.



Credits :
*CHM=Computer History Museum
*FFF=Kane, Famous First Facts
*NSEC= NASA Solar Eclipse Calendar
*RMAT= The Renaissance Mathematicus, Thony Christie
*SAU=St Andrews Univ. Math History
*TIA = Today in Astronomy
*TIS= Today in Science History
*VFR = V Frederick Rickey, USMA
*Wik = Wikipedia
*WM = Women of Mathematics, Grinstein & Campbell

Monday, 22 May 2017

On This Day in Math - May 22

The Le Petit Journal cover, on 1912 April 21, shows eclipse watchers in 1912 along with the solar eclipse of May 22, 1724, the previous total solar eclipse visible from Paris, France



“Biographical history, as taught in our public schools, is still largely a history of boneheads:
ridiculous kings and queens, paranoid political leaders, compulsive voyagers, ignorant generals 
- the flotsam and jetsam of historical currents. 
The men who radically altered history, 
the great scientists and mathematicians, 
are seldom mentioned, if at all.” 
Martin Gardner


The 142nd day of the year; there are 142 possible planar graphs with six vertices.

142 is the smallest Semi-prime (having exactly 2 prime factors), whose sum of divisors is a cube. 142+71+2+1 = 63


EVENTS
1453 A lunar eclipse fulfilled an omen for many prior to one of the red-letter dates in medieval history. On May 22, 1453 a partially eclipsed Moon rose over the city of Constantinople. One can only imagine the fear that it inspired in the embattled city that had already been under siege for a month. It certainly didn’t raise morale that legends had foretold that an eclipse would mark the fall of the Byzantine Empire. In a case of self-fulfilling prophecy, the city fell to the Ottomans seven days later.*listosaur.com

1649 Pascal obtained a monopoly by royal decree for his computing machine. [DSB 10, 332] *VFR

1724 A total solar eclipse occurred on May 22, 1724. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun, blocking all direct sunlight, turning day into darkness.
This solar eclipse crossed the United Kingdom near sunset, north-west to south-east track, from southern Wales and Devon in the west, eastwards to Hampshire and Sussex, but passing to the south of London.
It crossed the city Los Angeles, CA in the morning, unfortunately it wasn't settled until after 1771, 47 years later. The next total eclipse over Los Angeles won't occur until April 1, 3290. *Wik

1788 William Herschel reads a paper to the Royal Society describing the observation of two satellites around the "Georgian Planet." *Phil. Trans. R. Soc. Lond. 1788 78, 364-378
On 13 March 1781, when he discovered the new celestial object  he named  it "Georgium Sidus (the Georgian planet)".  It would later become the planet Uranus.
Herschel even claimed in 1797 that he saw rings around the seventh planet and drew a small diagram of the ring and noted that it was "a little inclined to the red". For nearly two centuries the claim was dismissed as a mistake but in 1977 rings around Uranus were detected during an experiment.* bristol@bbc.co.uk

1849, Abraham Lincoln was issued a patent for "buoying boats over shoals" (No. 6,469). He was the first American president to receive a patent. (Note: he was NOT President in 1849) His idea utilized inflated cylinders to float grounded vessels through shallow water. Lincoln had worked as a deck-hand on a Mississippi flat-boat. *TIS

1866 Herman von Helmholtz published his paper “On the facts that underlie the foundations of geometry,” containing an account of elliptic geometry. *VFR

1906, the brothers Orville and Wilbur Wright received a patent for  "new and useful improvements in Flying Machines" (U.S. No. 821,393). This was the first airplane patent in the USA. *TIS


1936  M. C. ESCHER visited the Alhambra on 18‑24 Oct 1922 and was impressed by the patterns, but he didn't really use them in his art until after his second visit on 22-26 May 1936

1973 Robert Metcalfe wrote a memo describing a way to transmit data from the early generation of personal computers to a new device, the laser printer. He called his multipoint data communications system Ethernet, and today it continues to dominate as the standard computer network. A U.S. patent for "a Multipoint data communication system with collision detection" was issued 13 Dec 1977 ( 4,063,220) to Metcalfe, and others who developed the Ethernet. The patent was assigned to the Xerox Corporation. *TIS

1995 astronomers Amanda S. Bosh and Andrew S. Rivkin found two new moons of Saturn in photos taken by the Hubble Space Telescope. *TIS

1999 These beautiful magic squares, consisting of 11-digit palindromic primes, are by Carlos Rivera and Jaime Ayala. They were e-mailed to *Harvey Heinz, Magic-Squares.net


2010 A Pac-Man Mini version, originally created by Google as an animated logo for the game's 30th anniversary on May 22, 2010. Play it here.



BIRTHS

1783 William Sturgeon  (22 May 1783 - 4 December 1850) English electrical engineer who devised the first electromagnet capable of supporting more than its own weight (1825). The 7-oz (200-g) magnet supported 9-lb (4-kg) of iron with a single cell's current. He built an electric motor (1832) and invented the commutator, now part of most modern electric motors. In 1836, he invented the first suspended coil galvanometer, a device for measuring current. Sturgeon also worked on improving the voltaic battery, developing a theory of thermoelectricity, and even atmospheric charge conditions. From 500 kite flights made in calm weather, he found the atmosphere is consistently charged positively with respect to the Earth, and increasingly so at increased height. *TIS

1848 Hermann Schubert (22 May 1848 in Potsdam, Germany – 20 July 1911 in Hamburg, Germany) worked on parts of algebraic geometry that involve a finite number of solutions. This is called Enumerative Geometry. *SAU

1865 Alfred Cardew Dixon (22 May 1865 in Northallerton, Yorkshire, England - 4 May 1936 in Northwood, Middlesex, England) Alfred Dixon graduated from London and Cambridge and then had professorial appointments in Galway

1903 Yves-André Rocard  (Vannes, 22 May 1903 – 16 March 1992 in Paris)  French mathematician and physicist who contributed to the development of the French atomic bomb and to the understanding of such diverse fields of research as semiconductors, seismology, and radio astronomy. During WW II, as Head of the Research Department of the Free French Naval Forces in England, he learnt about radars in England and interference from strong radio emission from the Sun. After the war, Rocard returned to France and proposed that France started a project to conduct radio astronomy. In the last part of his life he studied biomagnetism and dowsing which reduced his standing in the eyes of many of his colleagues. *TIS

1916 Albrecht Fröhlich FRS (22 May 1916 – 8 November 2001) was a mathematician famous for his major results and conjectures on Galois module theory in the Galois structure of rings of integers.
He was born in Munich to a Jewish family. He fled from the Nazis to France, and then to Palestine. He went to Bristol University in 1945, gaining a Ph.D in 1951 with a dissertation entitled On Some Topics in the Theory of Representation of Groups and Individual Class Field Theory under the supervision of Hans Heilbronn. He was a lecturer at the University of Leicester and then at the Keele University, then in 1962 moved as reader to King's College London where he worked until his retirement in 1981 when he moved to Robinson College, Cambridge.
He was elected a Fellow of the Royal Society in 1976. He was awarded the Berwick Prize of the London Mathematical Society in 1976 and its De Morgan Medal in 1992. The Society's Fröhlich Prize is named in his honour.
He is the brother of Herbert Fröhlich. *Wik

1920 Thomas Gold (22 May 1920; 22 Jun 2004 at age 84) Austrian-British-American astronomer known for a steady-state theory of the universe, explaining pulsars, and naming the magnetosphere. In 1948, as a graduate student at Cambridge, he (together with Hermann Bondi and Fred Hoyle) proposed that, a continuous creation of matter in space is gradually forming new galaxies, maintaining the average number of galaxies in any part of the universe, despite its expansion. This is not accepted, as there is more evidence for the Big Bang theory. In 1967, Gold presented his theory on the nature of pulsars (objects in deep space that produce regularly pulsing radio waves). He suggested that they were rotating neutron stars - tiny, extraordinarily massive stars - which emit waves as they spin. *TIS


DEATHS

1626 Caspar Schott SJ, and Gaspar Schott or Kaspar Schott (February 5 1608 in Königshofen, May 22 1666 in Würzburg) was a scientific author and educator.
Schott attended the Würzburg Jesuit High School and entered the Order in 1627. During his studies in Würzburg one of his teachers was Athanasius Kircher. When the Jesuits fled before the approaching Swedish army in 1631,Schott went to Palermo to complete his studies. He stayed in Sicily 20 years as a teacher of mathematics, philosophy, moral theology at the Jesuit school in Palermo. In 1652 was sent to Rome as support in the scientific work of Kircher. He decided to publish Kircher's work. In 1655, he returned as Professor in the Würzburg school, where he taught mathematics and physics. He was Hofmathematker and confessor of the Elector Johann Philipp von Schönborn who had just purchased the vacuum pump invented by Otto von Guericke and used at Magdburg.
He corresponded with leading scientists including Otto von Guericke, Christiaan Huygens, and Robert Boyle . The term "technology" was probably invented by Schott in his "Technica curiosa" which inspired Boyle and Hooke's vacuum experiments.
In the posthumously published work Organum mathematicum he describes his Cistula invented by him, a computing device with which you can multiply and divide. *Wik

1868 Julius Plücker (16 June 1801 – 22 May 1868)  German mathematician and physicist whose work suggested the far-reaching principle of duality, which states the equivalence of certain related types of theorems. He also discovered that cathode rays (electron rays produced in a vacuum) are diverted from their path by a magnetic field, a principle vital to the development of modern electronic devices, such as television. At first alone and later with the German physicist Johann W. Hittorf, Plücker made many important discoveries in spectroscopy. Before Bunsen and Kirchhoff, he announced that spectral lines were characteristic for each chemical substance and this had value to chemical analysis. In 1862 he pointed out that the same element may exhibit different spectra at different temperatures. *TIS

1967 Josip Plemelj (December 11, 1873 – May 22, 1967) was a Slovene mathematician, whose main contributions were to the theory of analytic functions and the application of integral equations to potential theory. He was the first chancellor of the University of Ljubljana.*Wik

1974 Irmgard Flugge-Lotz (6 July 1903 - 22 May 1974)born in Hameln, Germany. Her father encouraged her in mathematics, but she chose engineering because “I wanted a life which would never be boring—a life in which new things would always occur.” She studied applied mathematics at the Technical University of Hanover and in 1929 she became a Doktor-Ingenieur, the equivalent of an American Ph.D. in Engineering. She made contributions to aerodynamics, control theory, and fluid mechanics. In 1960 she became full professor at Stanford. *WM

1991 Derrick Lehmer  (February 23, 1905 – May 22, 1991) , one of the world's best known prime number theorists, born in Berkeley, California. Before World War II, Lehmer invented a number of electromechanical sieves for finding prime numbers and made many important contributions in prime number theory throughout his life. Prime numbers are of interest in themselves as mathematical curiosities but are also of great importance to cryptography. The Computer Museum History Center has three Lehmer sieves in its permanent collection. Lehmer died in 1991.*CHM Lehmer's peripatetic career as a number theorist, with he and his wife taking numerous types of work in the United States and abroad to support themselves during the Great Depression, fortuitously brought him into the center of research into early electronic computing.His father Derrick Norman Lehmer, known mainly as a pioneer in number theory computing, also made major contributions to combinatorial computing. *Wik

2009 Walter Ledermann (18 March 1911 in Berlin, Germany - 22 May 2009 in London, England) graduated from Berlin but was forced to leave Germany in 1933 to avoid Nazi persecution. He came to St Andrews and studied under Turnbull. He worked at Dundee and St Andrews until after World War II when he moved to Manchester and then to the University of Sussex. He is especially known for his work in homology, group theory and number theory. *SAU

2010  Martin Gardner (October 21, 1914 – May 22, 2010) died.  Gardner more or less single-handedly sustained and nurtured interest in recreational mathematics in the U.S. for a large part of the 20th century. He is best known for his decades-long efforts in popular mathematics and science journalism, particularly through his "Mathematical Games" column in Scientific American. *Wik
It is said that Gardner "Turned children into mathematicians and mathematicians into children.".. For some of us he did each in turn.  More than any classroom teacher I ever had, Martin Gardner shaped my mathematical interests. "For 35 years, he wrote Scientific American's Mathematical Games column, educating and entertaining minds and launching the careers of generations of mathematicians"
Only two days before I learned of his death, I stood in the front yard of my Mother's home in Fort Worth and told Alex, my sister's grandson, aged 12, that if he wanted to nurture his curiosity for math and science he should find anything in the library by Martin Gardner and read it every year for the next ten years of his life, and each year, I promised, he would find something new in the reading.
I can not do justice to the life of a man who was the mathematical Pied-Piper of mathematics for a generation of us; so here is link to the article in Scientific American.



Credits :
*CHM=Computer History Museum
*FFF=Kane, Famous First Facts
*NSEC= NASA Solar Eclipse Calendar
*RMAT= The Renaissance Mathematicus, Thony Christie
*SAU=St Andrews Univ. Math History
*TIA = Today in Astronomy
*TIS= Today in Science History
*VFR = V Frederick Rickey, USMA
*Wik = Wikipedia
*WM = Women of Mathematics, Grinstein & Campbell

Sunday, 21 May 2017

On This Day in Math - May 21



Whoever ... proves his point
and demonstrates the prime truth geometrically
should be believed by all the world,
for there we are captured
~Albrecht Durer


The 141st day of the year; 141 is the first non-trivial palindrome appearing in the decimal expansion of Pi, appearing immediately after the decimal point, 3.14159. Tanya Khovanova, Number Gossip

141 is the second n to give a prime Cullen number (of the form n*2n + 1). Cullen numbers were first studied by Fr. James Cullen in 1905. (That prime is 393050634124102232869567034555427371542904833,

141 is the number of lattice paths from (0,0) to (6,6) using steps (2,0), (0,2), (1,1).



EVENTS

1728 The term "mathematical expectation, "l'espérance mathématique," with its modern meaning is found in a letter by Gabriel Cramer to Nicholas Bernoulli.
The first use in English seems to be in A. de Morgan's Essay on Probabilities (1838, p. 97), "The balance is the average required, and is known by the name of the mathematical expectation." (OED). *Jeff Miller, Earliest Known Uses of Some of the Words of Mathematics

1819 the first bicycle in the U.S. was seen in New York City. Such bicycle velocipedes or "swift walkers" had been imported that same year. Shortly thereafter, on 19 Aug 1819, the city's Common Council passed a law to "prevent the use of velocipedes in the public places and on the sidewalks of the city of New York."**TIS (Skateborders take note, you are not the first to be banned from the sidewalks)

1908 Glenn (Hammond) Curtiss was a pioneer in the development of U.S. aviation whose aircraft were widely used during World War I. That the Wrights made the first powered flights has generally been accepted, but the achievements of Curtiss spanned several decades and took the airplane from its wood, fabric and wire beginnings to the forerunners of modern transport aircraft. Curtiss made his first flight on his 30th birthday, 21 May 1908, in White Wing, a design of the Aerial Experiment Association, a group led by Alexander Graham Bell. White Wing was the first plane in America to be controlled by ailerons instead of the wing-warping used by the Wrights. It was also the first plane on wheels in the U.S. *TIS (See 1878 Birth below)

1901 the first U.S. State motor car legislation was an act to regulate the speed of motor vehicle, passed in Connecticut. A limit was established of 12 mph within city limits and 15 mph outside, which were higher than the 8 mph city and 12mph country speeds in the bill as originally presented. Also, the car driver was required to reduce speed upon meeting or passing a horse-drawn vehicle, and if necessary, to stop to avoid frightening the horse.*TIS

This last part about meeting (or passing) a horse, with or without cart, is still essentially the law in England and Ireland.

1916 Daylight Saving Time was introduced in Britain as a war-time measure to save fuel. The idea began when a London builder, William Willett, presented a scheme of shifting the clock to better use the hours of daylight in summer. He campaigned and published a brochure on the subject in 1907 (in which his proposal was to adjust the clocks in four weekly adjustments of 10-mins). When Parliament did consider a Daylight Saving Bill, to implement a seasonal one-hour change, it failed for lack of support. However, a little more than a year after his death after his death, the idea was finally adopted during WW I for wartime fuel savings. Now most of the countries in the northern hemisphere use a form of daylight saving time. *TIS

1932 Amelia Earhart flew alone across the Atlantic, being the first woman to do so. *VFR

1952 IBM Announces Model 701, "Defense Calculator.":
IBM announced its 701 machine and by doing so emphasized its commitment to innovation in electronic computing. The company's first computer designed for scientific computations. The IBM 701 had an electrostatic storage tube memory and kept information on magnetic tape. The company eventually sold 19 of the machines -- more than expected -- to the government and large companies and universities for complex research.*CHM





BIRTHS

429 B.C. Plato born in Athens. He died on the same date in 348 B.C. [Muller] [Should it be 427 B.C.?] *VFR

1471 Albrecht Durer, (21 May 1471 – 6 April 1528) German painter and engraver. Mathematicians are fond of his etching Melancholia for it contains the magic square. Oldstyle numerals are used in the two center squares to emphacize the year that this etching was done by Durer. There is still debate about the shape of the solid in the foreground of the picture. *TIS He also published a book on geometric constructions (1525) using a straight-edge and compass. Although designed to enable artists better represent a natural three-dimensional scene on a canvas, Dürer included careful proofs to establish the validity of the constructions. In this respect, it could be regarded as the oldest surviving text on applied mathematics. He also wrote on the proportions of the human body. *TIS  At a blog by Richard Elwes I found out that Durer was also was one of the first to create a fractal image. In reference to some snowflake fractals at walking randomly he writes,  "It was Dürer who first discovered them, in the second volume of his work Underweysung der Messung (‘Instruction in measurement’) in 1525 (almost 400 years before the discovery of the Koch snowflake)."  He also let me know that "Durer had a hand in the invention of nets, and the rediscovery of Archimedan solids." Thanks Richard. The Renaissance Mathematicus pointed out in his blog that Durer's geometry book was the first true math book printed in the German language.

A close up of the magic square


1792 Gustave-Gaspard Coriolis  (21 May 1792 – 19 September 1843) French engineer and mathematician who first described the Coriolis force, an effect of motion on a rotating body, of paramount importance to meteorology, ballistics, and oceanography. Whereas pressure differences tend to push winds in straight paths, winds follow curved paths across the Earth. In 1835, Coriolis first gave a mathematical description of the effect, giving his name to the Coriolis force. While air begins flowing from high to low pressure, the Earth rotates under it, thus making the wind appear to follow a curved path. In the Northern Hemisphere, the wind turns to the right of its direction of motion. In the Southern Hemisphere, it turns to the left. The Coriolis force is zero at the equator. *TIS

My high-school science teacher told me that the Coriolis effect explains why bathtubs in the Northern Hemisphere drain in a clockwise swirl ... John Cook explains that is a science myth.

1839 Nils Christofer Dunér (21 May 1839; 10 Nov 1914 at age 75) Swedish astronomer who studied the rotational period of the Sun. Although his PhD thesis had been theoretical (the orbit of asteroid Panopea), Dunér mostly worked as an observer. The most outstanding observing astronomer in Swedish 19th century astronomy, he is mostly known for his introduction of new astrophysical techniques. In 1867-75, he made 2679 micrometer measurements of 445 double and multiple stars. After publishing his catalogue of double star measurements in 1876, Dunér turned to spectroscopy, at first specializing in the spectra of red stars. Later, by measuring the Doppler shift of the spectral lines of light from the approaching and receding edges of the sun, he made the significant discovery that the rotational period differs from about 25.5 days near the Sun's equator but up to 38.5 days near the Sun's poles. His career spanned over almost 50 years, from classical astronomy to astrophysics. *TIS

1847 Antonio Favaro, (21 May, 1847 - ? 1922) Professor of Projective Geometry at Padua, editor of  the works of Galileo after a labor of thirty years.

1858 Édouard (-Jean-Baptiste) Goursat - (21 May 1858 – 25 November 1936) French mathematician and theorist whose contribution to the theory of functions, pseudo- and hyperelliptic integrals, and differential equations influenced the French school of mathematics. The Cauchy-Goursat theorem states the integral of a function round a simple closed contour is zero if the function is analytic inside the contour. Cauchy had established the theorem with the added condition that the derivative of the function was continuous. In 1891, he wrote Leçons sur l'intégration des équations aux dérivées partielles du premier ordre. Goursat's best known work is Cours d'analyse mathématique (1900-10) which introduced many new analysis concepts. *Wik

1878 Glenn (Hammond) Curtiss (May 21, 1878 – July 23, 1930) was a pioneer in the development of U.S. aviation.. (see 1908 in Events above)

1923 Armand Borel (21 May 1923 –11 August 2003) was a Swiss mathematician, born in La Chaux-de-Fonds, and was a permanent professor at the Institute for Advanced Study in Princeton, New Jersey, United States from 1957 to 1993. He worked in algebraic topology, in the theory of Lie groups, and was one of the creators of the contemporary theory of linear algebraic groups. *Wik

1958 Curtis Tracy McMullen (21 May 1958- ) is Professor of Mathematics at Harvard University. He was awarded the Fields Medal in 1998 for his work in complex dynamics, hyperbolic geometry and Teichmüller theory.
McMullen graduated as valedictorian in 1980 from Williams College and obtained his Ph.D. in 1985 from Harvard University, supervised by Dennis Sullivan. He held post-doctoral positions at the Massachusetts Institute of Technology, the Mathematical Sciences Research Institute, and the Institute for Advanced Study, after which he was on the faculty at Princeton University (1987–1990) and the University of California, Berkeley (1990–1997), before joining Harvard in 1997. He received the Salem Prize in 1991 and was elected to the National Academy of Sciences in 2007.
McMullen also has given a proof that backgammon ends with probability one*Wik


DEATHS

1670 Niccolò Zucchi (December 6, 1586 – May 21, 1670) Italian astronomer who, in approximately 1616, designed one of the earliest reflecting telescopes, antedating those of James Gregory and Sir Isaac Newton. A professor at the Jesuit College in Rome, Zucchi developed an interest in astronomy from a meeting with Johannes Kepler. With this telescope Zucchi discovered the belts of the planet Jupiter (1630) and examined the spots on Mars (1640). He also demonstrated (in 1652) that phosphors generate rather than store light. His book Optica philosophia experimentalis et ratione a fundamentis constituta (1652-56) inspired Gregory and Newton to build improved telescopes. *TIS

1686 Otto von Guericke (originally spelled Gericke) (November 20, 1602 – May 11, 1686 (Julian calendar); November 30, 1602 – May 21, 1686 (Gregorian calendar)) was a German scientist, inventor, and politician. He is best remembered for his invention of the Magdeburg hemispheres, popularized in the writings of Caspar Schott. His major scientific achievements were the establishment of the physics of vacuums, the discovery of an experimental method for clearly demonstrating electrostatic repulsion, and his advocacy of the reality of "action at a distance" and of "absolute space". *Wik

1825 William Nicholson (13 December 1753 – 21 May 1815) was a renowned English chemist and writer on "natural philosophy" and chemistry, as well as a translator, journalist, publisher, scientist, inventor, patent agent and civil engineer.
In 1797 he began to publish and contribute to the Journal of Natural Philosophy, Chemistry and the Arts, generally known as Nicholson's Journal, the earliest monthly scientific work of its kind in Great Britain— the publication continued until 1814. The journal included the first comprehensive descriptions of aerodynamics with George Cayley's "On Aerial Navigation", which inspired the Wright brothers a hundred years later. In May 1800 he with Anthony Carlisle discovered electrolysis, the decomposition of water into hydrogen and oxygen by voltaic current. The two were then appointed to a chemical investigation committee of the new Royal Institution. But his own interests shortly turned elsewhere.
Besides considerable contributions to the Philosophical Transactions, Nicholson wrote translations of Fourcroy's Chemistry (1787) and Chaptal's Chemistry (1788), First Principles of Chemistry (1788) and a Chemical Dictionary (1795); he also edited the British Encyclopaedia, or Dictionary of Arts and Sciences (6 vols., London, 1809).
Nicholson died in Bloomsbury at the age of 61 on 21 May 1815. *Wik

1826 Georg von Reichenbach (July 21, 1771 – May 21, 1826) German maker of astronomical instruments who introduced the meridian, or transit, circle, (above) a specially designed telescope for measuring both the time when a celestial body is directly over the meridian (the longitude of the instrument) and the angle of the body at meridian passage. By 1796 he was engaged in the construction of a dividing engine, a machine used to mark off equal intervals accurately, usually on precision instruments. *TIS 

1848 Pierre Laurent Wantzel (June 5, 1814 in Paris – May 21, 1848 in Paris) was a French mathematician who proved that several ancient geometric problems were impossible to solve using only compass and straightedge. In a paper from 1837,( "Recherches sur les moyens de reconnaître si un Problème de Géométrie peut se résoudre avec la règle et le compas". Journal de Mathématiques Pures et Appliquées) he proved that the problems of
1. doubling the cube
2. trisecting the angle and
3. constructing a regular polygon whose number of sides is not the product of a power of two and any number of distinct Fermat primes (i.e. that does not fulfill the same conditions proven to be sufficient by Carl Friedrich Gauss) the solution to which had been sought for thousands of years, particularly by the ancient Greeks, were all impossible to solve if one uses only compass and straightedge. *Wik

1911 Williamina Paton Stevens Fleming (15 May 1857 - 21 May 1911 at age 53) was a Scottish-American astronomer (née Stevens) who pioneered in the classification of stellar spectra and the first to discover stars called "white dwarfs." She emigrated to Boston at age 21. Prof. Edward Pickering, director of the Harvard Observatory first employed Fleming as a maid, but in 1881 hired her to do clerical work and some mathematical calculations at the Observatory. She further proved capable of doing science. After devising her system of classifying stars by their spectra, she cataloged over 10,000 stars within the next nine years. Her duties were expanded and she was put in charge of dozens of young women hired to do mathematical computations (as now done by computers).*TIS

1953 Ernst Friedrich Ferdinand Zermelo (July 27, 1871 – May 21, 1953) was a German mathematician, whose work has major implications for the foundations of mathematics and hence on philosophy. He is known for his role in developing Zermelo–Fraenkel axiomatic set theory and his proof of the well-ordering theorem.*Wik

1957 Aleksandr Ivanovich Nekrasov (9 Dec 1883 in Moscow, Russia - 21 May 1957 in Moscow, Russia) Nekrasov published important work on the theory of waves, the theory of whirlpools, the theory of jet streams and gas dynamics. He also investigated mathematical questions which were related to these applications, in particular writing important works on non-linear integral equations. In fact his deep understanding of mathematical analysis as developed by mathematicians such as Goursat enabled him to succeed in solving a whole range of concrete problems. *SAU

1958 Wilhelm Süss (7 March 1895 - 21 May 1958) was a German mathematician. He was born in Frankfurt, Germany and died in Freiburg im Breisgau, Germany. He was founder and first director of the Mathematical Research Institute of Oberwolfach.*Wik

1964 James Franck (26 Aug 1882; 21 May 1964) German-born American physicist who shared the Nobel Prize for Physics in 1925 with Gustav Hertz for research on the excitation and ionization of atoms by electron bombardment that verified the quantized nature of energy transfer.*TIS
In 1933, after the Nazis came to power, Franck, being a Jew, decided to leave his post in Germany and continued his research in the United States, first at Johns Hopkins University in Baltimore and then, after a year in Denmark, in Chicago. It was there that he became involved in the Manhattan Project during World War II; he was Director of the Chemistry Division of the Metallurgical Laboratory[5] at the University of Chicago. He was also the chairman of the Committee on Political and Social Problems regarding the atomic bomb; the committee consisted of himself and other scientists at the Met Lab, including Donald J. Hughes, J. J. Nickson, Eugene Rabinowitch, Glenn T. Seaborg, J. C. Stearns and Leó Szilárd. The committee is best known for the compilation of the Franck Report, finished on 11 June 1945, which recommended not to use the atomic bombs on the Japanese cities, based on the problems resulting from such a military application.
When Nazi Germany invaded Denmark in World War II, the Hungarian chemist George de Hevesy dissolved the gold Nobel Prizes of Max von Laue and James Franck in aqua regia to prevent the Nazis from stealing them. He placed the resulting solution on a shelf in his laboratory at the Niels Bohr Institute. After the war, he returned to find the solution undisturbed and precipitated the gold out of the acid. The Nobel Society then recast the Nobel Prizes using the original gold.*Wik

1973 Grigore Constantin Moisil (10 January 1906 in Tulcea, Romania – 21 May 1973 in Ottawa, Canada) was a Romanian mathematician, computer pioneer, and member of the Romanian Academy. His research was mainly in the fields of mathematical logic, (Łukasiewicz-Moisil algebra), Algebraic logic, MV-algebra, algebra and differential equations. He is viewed as the father of computer science in Romania. *Wik



Credits :
*CHM=Computer History Museum
*FFF=Kane, Famous First Facts
*NSEC= NASA Solar Eclipse Calendar
*RMAT= The Renaissance Mathematicus, Thony Christie
*SAU=St Andrews Univ. Math History
*TIA = Today in Astronomy
*TIS= Today in Science History
*VFR = V Frederick Rickey, USMA
*Wik = Wikipedia
*WM = Women of Mathematics, Grinstein & Campbell